chatglm-6b fine-tuning/LORA/PPO/reasoning, the samples are automatically generated integer/decimal addition, subtraction, multiplication, and division operations, which can be used for gpu/cpu
Dataset-Chinese - [https://github.com/tatsu-lab/stanford_alpaca
-](https://github.com/tatsu-lab/stanford_alpaca
-) https://github.com/LianjiaTech/BELLE
- [https://github.com/carbonz0/alpaca-chinese-dataset](https://github.com/carbonz0/alpaca-chinese-dataset
) `
- eps=1e-5(不要改小), 半精度float16, 以及LN采用的是Post-LN(泛化性更好) + DeepNorm, 【害, Attention前也有LN】目的是大模型为了防止梯度溢出等;
- 模型输入输出, 默认的tokenization_chatglm.py/modeling_chatglm.py不能用, 因为那是完全为生成generate设置的, 需要自己写好所有缩入参数, 或者机子改成适配的;
2.1 ChatGLMModel中, get_masks()正常, get_position_ids()函数中'context_length = seq.index(150004) + 1' 改为'context_length = len(seq)';
2.2 训练输入input_ids格式暂定为(训练后post-padding, 推理前pre-padding[tokenization_chatglm.py默认pre-padding])
x: prompt_1 + "_" + text_1 + "\n" + prompt_2 + [gMASK] + [BOS] + "_" + text_2 + [PAD]*N
2.3 训练输入label_ids格式暂定为(CrossEntropyLoss默认忽略-100不参与计算loss)
y = [-100]*len(text_1) + [BOS] + text_2 + [EOS] + [-100]*N
2.4 注意position/mask(自带的只是推理用的batch_size=1, 所以训练输入还得自己写), 可参考GLM-130的README.md, huozhe 查看GLM-1源码https://github.com/THUDM/GLM/blob/main/tasks/seq2seq/dataset.py
- 注意chatglm-6b权重是float16的, 不过计算loss时候会转成float32计算, 最后loss再转回float16更新梯度;
- ChatGLMTokenizer有时候会报奇奇怪怪的错误, 建议生成时候设置max_new_tokens, 最大{"max_new_tokens": 2048}; decode有时候会出现不存在id;
- 低秩自适应LORA, RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
尝试transformers升级到最新, get_peft_model后再.cuda(), device_map={'':torch.cuda.current_device()},
`
Environment configuration
`
transformers>=4.26.1
cpm_kernels==1.0.11
icetk==0.0.4
torch>=1.10.1
rouge==1.0.1
nltk==3.6.6
peft>=0.2.0
numpy
tqdm
lion_pytorch
macropodus
trl>=0.4.1
`
Fine-tuning-calculation questions
lora
micro `
lora
微调: python c00_toy_lora_train_6b.py
推理: python p00_toy_lora_predict_6b.py
ppo
训练: python t10_toy_trl_train_ppo.py
测试: python t10_toy_trl_predict_ppo.py
6b
微调: python c00_toy_cpu_train_6b.py
推理: python p00_toy_cpu_predit_6b.py
small-layer
微调: python c01_toy_cpu_train_small.py
推理: python p01_toy_cpu_predict_small.py
` 🧥/github.com/THUDM/GLM
-https://github.com/tatsu-lab/stanford_alpaca
-https://github.com/LianjiaTech/BELLE
-https://github.com/huggingface/peft
-https://github.com/mymusise/ChatGLM-Tuning
-https://github.com/bojone/bert4keras
-trl🧥👐 🏻🧥 - math23k
Visit Official Website
https://github.com/yongzhuo/chatglm-maths